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A numerical study of vortex interaction 
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Flow visualization has shown that the interaction of line vortices is a combination 
of tearing, elongation and rotation, the extent of each depending upon the flow 
conditions. A discrete-vortex model is used to  study the interaction of two and three 
growing line vortices of different strengths and to  assess the suitability of the method 
for such simulation. 

Many of the features observed in experimental studies of shear layers are 
reproduced. The controlled study shows the importance and rapidity of the tearing 
process under certain conditions. 

1. Introduction 
Turbulent mixing results from the interaction of the large-scale structures - vortical 

structures - found in regions of mixing. An understanding of these interactions not 
only aids in the development of mathematical models for vortical flows but also in 
the control of such mixing which is pertinent to  many engineering problems. 

Experimental studies have revealed a coherent structure of the turbulent mixing 
layer. In  fact the entanglement of such vortex structures dominates the full extent 
of the mixing. Subsequent numerical studies have supported (or been supported by) 
the results of experimental investigations. 

The discrete-vortex method has been used in the simulation of such fluid motion. 
Unfortunately, the method has some inherent problems which have limited the 
application of the method. The discrete vortices used to model the vortex sheet have 
a tendency to random motion due to high induced velocities resulting from the close 
proximity of the discrete vortices. Such problems have been overcome in the present 
work by means of a rediscretization technique (Bromilow & Clements 1982) which 
has been shown to mitigate the problems. The reader should refer to the cited paper 
for a complete discussion of the technique and a comparison with other techniques. 

This paper is concerned with the interaction of vortices with similar or different 
strengths. Such interactions have been discussed widely in the literature and different 
mechanisms have been proposed. It is intended to show that some of the interactions 
and mechanisms can be reproduced by a numerical simulation of this kind. 

This study might indicate the suitability and conditions necessary for such a 
method to be a reliable tool of computational fluid dynamics. The limitations, as well 
as the successes, of any numerical technique must be borne in mind in any application. 

2. Previous investigations - experimental and numerical 
Flow visualization photographs have shown vortices interacting under various 

conditions. These results have created intrigue concerning the mechanism of the 
interactions thus leading to the development of various theories. 
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Winant & Browand (1974) performed experiments a t  a moderate Reynolds 
number, which clearly showed three stages to the development of a vortex sheet: (i) 
wavelike structures ; (ii) discrete vortices ; (iii) rolling structures. The vortical 
structures tended to  pair, roll around one another and amalgamate into a new vortex. 
This interaction resulted in a straining motion which caused the cross-section of the 
vortices to become ellipses with a major-to-minor axis ratio of around 2 .  

Experiments by Brown & Roshko (1974), a t  a higher Reynolds number, revealed 
that a vortex sheet possesses a very coherent structure. Eddy pairing was not as 
obvious, but on plotting the trajectories of the eddies the pairing and also triplet and 
quadruple amalgamation became evident. The interaction of the vortices provided 
a very definite mixing, as fluid from one side of the vortex sheet made deep incursions 
into the other side. 

Rapid mixing was evident in the photographs of Dimotakis & Brown (1974). 
Entrained fluid was seen to  remain relatively unmixed until the onset of amalgation, 
after which mixing was very rapid and accompanied by a tearing apart of the vortices. 

Vortex interactions would seem to be a combination of several processes. Damms 
& Kiichemann (1974) suggest that  the processes are rotation, elongation and tearing, 
the first two being the most important. I n  contrast, an argument proposed by Moore 
& Saffman (1975), based on the stability of a vortex under the straining effect of other 
vortices, implies that  tearing is the dominant process. The straining motion would 
cause vortices of circular cross-section to  be replaced by elliptical vortices, a process 
that is supported by experimental evidence. 

Apart from the obvious kind of interaction, the growth of subharmonics of the 
initial perturbation contributes to the development and subsequent breakdown of 
a vortex sheet. The work of Browand (1966) showed that the process of instability 
increased the number of important frequencies, from a single frequency, by the 
creation of higher and lower harmonics. 

Numerical studies have resulted in some of the above observations being reproduced. 
Acton (1976) modelled an infinite thick vortex sheet (the Helmholtz instability) by 
four rows of point vortices. The vortex sheet was given a sinusoidal perturbation and 
the development followed. 

Elongation of the vortex structures was observed, and also rotation. However, i t  
was concluded by Acton that the tearing apart of vortex structures was far less likely 
to occur unless the array of vortices was very regular. Elongation and rotation were 
also simulated by the calculation of Ashurst (1977), which involved several thousand 
vortices (and 250 hours of computing). The tearing process was not particularly 
evident. 

Christiansen & Zabusky (1973) used a vortex-in-cell appproach to study such 
interactions. Fusion of vortex structures together with elongation and rotation were 
observed in the development of the vortex sheet. However, on studying a collinear 
system of vortices, the linear-growth phase was followed by a period of rapid fission. 

3. Foundations of the numerical method 
Hama & Burke (1960) applied the discrete-vortex method to the development of 

a sinusoidally perturbed vortex sheet. They showed that a perturbation 
y = a sin (2nxlh) resulted in a vorticity distribution of the form 

y(z )  = 2 u  1-- cos- , ( 2Y 2nx) h 
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where a is the amplitude of the disturbances, h the wavelength and U the free-stream 
velocity. Since the total strength of the vortex sheet is 2U, a sinusoidal perturbation 
results in a cosine vorticity distribution. 

The development of this basic problem has been considered by many authors. One 
wavelength of the infinite vortex sheet is modelled by n discrete vortices. Differential 
equations for the components of induced velocity can be set up, integrated to provide 
new positions for the discrete vortices and so the calculation proceeds. A fourth-order 
RungeKutta  integration scheme with a timestep of 0.025 was used in the present 
study, and either 36 or 42 vortices were used to model the sheet initially. The basic 
development is discussed by Bromilow & Clements (1982). 

Certain conditions must be satisfied in order for an application of the discrete vortex 
method to be valid. The work of Moore (1979) shows that the initial-value problem 
for the Helmholtz instability has no solution for times greater than a critical time 
t ,  = O(1og E-l ) ,  where E is the initial amplitude of the disturbance. In the present 
work, the maximum amplitude is 0.02, thus log E-l is 3.912. The interaction of the 
two vortices is stopped a t  a non-dimensional time of 0.70, and that of three vortices 
a t  0.45. Thus one could argue that the time of calculation lies within the limits 
suggested by Moore ( 1979). 

The same paper concludes that the vortex sheet is an inadequate approximation 
for a vortex layer unless it is everywhere undergoing rapid stretching. For the model 
reported, regions of rapid stretching are represented by discrete vortices, whereas in 
regions of compression an amalgamation technique is used. 

Again, a real vortex layer of finite thickness can be represented by a vortex sheet 
only if the scale of motion greatly exceeds the vortex-layer thickness. Throughout 
this paper, the results of the simulation are compared with the experimental results 
of Brown & Roshko (1974). In order for such comparisons to be of value, it  is necessary 
to argue that the vortex layer studied by Brown & Roshko can be represented by 
a vortex sheet. Such an argument is presented in the Appendix. 

A study of interacting vortices is achieved by extending this basic formulation. By 
combining subharmonics of the fundamental perturbation, two or more vortices of 
different strengths will form in each wavelength of the perturbation. Of course, the 
overall disturbance is still periodic and this can limit the application of the model. 
as discussed later. 

Thus a perturbation y = a sin (4xxlh) would result in two vortices per wavelength. 
By combining this perturbation with p cos (2xxlh) (say), i.e. 

4x11: 2xx 
y = a sin--+/3 h cos-, h 

the two vortices will be of different strength. Using the work of Hama & Burke (1960), 
the vorticity distribution will be 

y(x) = 2u 1-- ( 4Y 4xx 2xp 
cos-+- 

h A  
sin y )  

A knowledge of this distribution allows a discretization of the vortex sheet. 

y = a sin (6nzlh) with a subharmonic, i.e. 
A similar technique was used for three interacting vortices, by combining 

6x 4x 6nx 2712 
y = a sin-+p h sin-, h or y = asin-+psin-- h h 
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FIGURE 1 .  Differential stretching of the vortex sheet. 

By varying the amplitudes a and /3, vortices of different strengths can be obtained, 
and hence their interactions may be studied. The chosen values of 01 and ,8 will be 
discussed in the relevant section. 

The total perturbation was fixed and equal to 2 %  of the wavelength, i.e. 
a+/3 = 0.02. This choice is quite arbitrary, but obviously too large a perturbation 
should be avoided. By fixing the value of the total perturbation and varying a and 
/3 within this constraint should reveal the effects, if any exist, of constituent parts 
of the disturbance. 

The model also incorporates an amalgamation and rediscretization technique as 
discussed by Bromilow & Clements (1982). 

4. The interaction of two vortices 
The interaction of two vortices was achieved by combining a sine and cosine 

perturbation i.e. 
4nx 2nx 

y = a sin-+/3 sin-. 
h n 

By varying the values of a and p, vortices of different strengths can be obtained. 
This paper concentrates on two cases : 

(i) a = 0.0175, /3 = 0.0025 (figure 2 ) ;  

(ii) a = 0.0075, /3 = 0.0125 (figure 3). 

Case ( i )  results in the formation of two vortices whose strengths vary only slightly, 
whereas in case (ii) the vortices have very different strengths. Other combinations 
of 01 and p were considered, intermediate to the above extremes, which confirmed the 
trends reported below. 

As expected, the stronger vortex was always found to have a direct influence on 
the development of the weaker vortex. Discrete vortices were drawn away from the 
weaker part of the sheet. Thus, owing to the periodic form of the perturbation, the 
discrete vortices would move in the direction of the arrows shown in figure 1 ,  so 
resulting in a concentration of vorticity a t  certain places. (N.B. the total vorticity 
contained in the actual amalgamated core is marked on some of the diagrams. The 
total vorticity in one wavelength is 2U, i.e. 2 in these cases.) 

The rediscretization technique was extended to allow a movement of vorticity 
between different parts of the sheet, but without reducing the detail of its description. 
Unlike other studies in which regions of stretching were soon lacking in vortices (and 
hence detail), the present vortex sheet was always modelled by an equispaced set of 
vortices. 

Passive markers were used to show the differential stretching of the sheet, as 
illustrated in figures 2(a,b) and 3(a, b) .  The rate a t  which the markers move (and hence 
the transfer of vorticity) was found to depend upon their position and the difference 
between the strengths of the developing vortical structures. Thus for case (i)  50.5 yo 
of the total vorticity is in the first half-wavelength a t  non-dimensional time t = 0, 
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FIQURE 2. Interaction of two vortices. 

and 52 yo a t  t = 0.8; whereas for case (ii) there is 52.5 yo initially, but 62.5 yo a t  t = 0.8. 
I n  the obvious absence of rotation, this interaction is interpreted as the tearing 
process of Moore & Saffman (1978). 

The calculation revealed a definite boundary between the fluid being drawn in one 
direction and that being drawn in the other. Once markers had come under the 
influence of either of the developing vortices, they would remain under such influence, 
and on reaching the amalgamation region would rotate in a clockwise direction. This 
and other similarities with the results of Acton (1976) support the replacement of 
clusters of vortices by an equivalent vortex surrounded by irrotational fluid. 

The tearing process was found to be most significant in the early development of 
the vortex sheet, the time during which the rate of roll-up is greatest. Such behaviour 
is discernible from the vorticity distribution as parts of the sheet become very weak. 
Beyond such a time the circular vortices flatten and tend to el!ipses (figures 2 c ,  3c),  
as reported by Winant & Browand (1974). The elliptical vortices in the results 
presented also possess a major-to-minor axis ratio of approximately two. 

The amplitude of the disturbance or width H of the vortex sheet was found to reach 
a maximum, as illustrated in figure 4. When a large difference exists between the 
strengths of the developing vortices, the width of the vortex sheet is greater and the 
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FIGURE 3. Interaction of two vortices. 
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FIGURE 4. Spreading rate of vortex sheet (2 vortices) : (-) case (i) ; (---) case (ii). 



A numerical study of vortex interaction 337 

*-.. .* 
* *  

. .  

- ..=. : 

. . -. 0. ,. 
.. 

. t:: - .  .. 

t = 0.60 

t = 0.70 

t = 0.80 

t = 0.90 

0.5 x 1.0 

FIGURE 5.  Interaction of two vortices - after relaxation of redistribution technique. 

sheet thickens over a longer period of time. This occurs because a vortex is more able 
to draw off vorticity from another when there is a greater difference in their strengths. 
The straight line superimposed on figure 4 has gradient z 0.37 (after scaling), which 
is the average spreading rate of a vortex sheet as proposed by Brown & Roshko (1974). 
The present vortex sheets spread at similar rates. 

The width of the shear layer is seen to reach a maximum. This is to be expected, 
since the results show the interaction of two vortices only. As seen from the results 
of Brown & Roshko (1974), this initial interaction would be followed by further 
amalgamation and a spreading of the shear layer. The subsequent development would 
also require subharmonics of even lower orders to trigger it. The presented results 
therefore correspond to the first stage of vortex interaction. 

The elongation of the vortical structures causes a thickening of the vortex sheet 
(figures 2d,  3 4 .  This would normally facilitate the subsequent dissipation of vorticity 
by viscosity, especially in regions where the sheet is relatively weak. The straining 
motion responsible for the elongation is due to the developing very non-uniform 
distribution of vorticity, which results in secondary concentrations away from the 
regions of roll-up. These are indicated on figures 2 ( d )  and 3 ( d )  by arrows. Secondary 
concentrations were reported by Christiansen & Zabusky (1973), but the absence of 
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the associated rotation, as reported by these authors, is probably due to the very 
regular initial arrangement. 

I n  the simulations reported by other researchers, rotation was promoted by adding 
an initial asymmetry. Forcing of this kind did not lead to interaction by rotation 
in the reported calculations. However, ‘ switching off’ the rediscretization process, 
after the formation of vortical structures, resulted in a rotation interaction. This is 
illustrated in figure 5.  

Vortex interaction is thought to be responsible for turbulent mixing. In  the results 
shown (figures 2 4 ,  long arms of fluid from one side of the vortex sheet are seen to 
penetrate the other side. This would generate mixing of fluid in the manner suggested 
by the experimentalists. 

At later times there are still major differences between the two systems of vortices. 
The stronger vortex retains its coherent structure longer than the weaker one - 
especially when the difference between the strengths is large. The dominating effect 
of the much stronger vortex enables the vortex sheet to grow over a longer period 
of time. With the absence of such a dominating vortex, localized instabilities soon 
become globalized, thus causing an overall breakdown in the coherent structure and 
so limiting the growth of the vortex sheet. 

5. The interaction of three vortices 

combinations of subharmonics and fundamentals : 
The development and interaction of three vortices resulted from the following 

67cx 4nx 
y = 0.012 sin-+0.008 sin- 

h h 
(figure 6) ; 

67cx 47cx 
y = 0.0075 sin-+0.0125 sin- 

h h 
(figure 7) ; 

67cx 2nx 
h h 

(iii) y = 0.015 sin-+0.005 sin- (figure 8). 

These three cases are reported since the interactions possess very distinct charac- 
teristics. Cases (i) and (ii) correspond to a strong-weak-strong situation with the 
difference in strengths much greater in case (ii). Case (iii) corresponds to a weak- 
strong-weak situation. 

Unlike the case of two vortices, the present combinations of subharmonics have 
caused the centres of roll-up to be unevenly distributed within each wavelength. The 
positions of the two outer centres have been displaced towards the inner. As a result, 
the two outer vortices will have a greater influence on each other’s development than 
would a corresponding vortex of the adjacent wavelength. A slight rotation of the 
whole wavelength has resulted which would probably be far greater if the initial 
arrangement was less regular. 

Comparison between the development of two vortices and that of three is possible 
(table l), but care must be taken in choosing the correct timesteps. If T = Ut/h  is 
the non-dimensional time for the two-vortex case, then T = Ut/$h for the vortex case, 
i.e. the interaction of two vortices at time T should be compared with the interaction 
of three a t  time $T. 

The onset of instabilities occurs much earlier during the interaction of three 
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FIGURE 6. Interaction of three vortices 

vortices. The coherent structure of the mixing layer is destroyed sooner, thus reducing 
the growth of the perturbation and the extent of mixing. This is supported by the 
predictions of Moore & Saffman (1975), who set a stability criterion for arrays of 
interacting vortices. If 1 is the mean spacing of the vortices and S the maximum 
thickness of the array, then vortices will interact destructively if 1 < 0.356. 

A weakness of the model emerges in case (i) (figure 6 4 .  As a result of superposing 
subharmonics, the upper and lower sections of the vortex sheet about the first and 
third vortices possess different vorticity distributions. Consequently, part of the sheet 
is drawn towards a secondary concentration, and does not roll around the central 
vortex core as expected. 

Apart from obvious similarities between the interaction of two and three vortices, 
the latter has resulted in more elaborate interactions. The strong-weak-strong case 
exhibits a definite tearing apart of the weaker vortex, especially in case (ii) (figure 
7) .  Tearing is observed in case (i) (figure 6 B ) ,  but there is more resemblance to the 
two-vortex case. This difference in behaviour is supported by the stability argument 
of Moore & Saffman (1975). 
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FIGURE 7 .  Interaction of three vortices. 

Table 2 compares the interaction of three vortices (cases (i) and (ii)), and supports 
the above observations from the graphics by predictions using the Moore & Saffman 
criterion. 

Finally, the weak-strong-weak case exhibits behaviour peculiar to itself. There is 
a one-sided elongation of the weaker vortex in the direction of the stronger (figures 
8 c ,  d ) .  Elongation of this kind is a consequence of its interaction with the stronger 
vortex and also the weaker vortex of the adjacent wavelength. 

The relative sizes of the vortex structures are, of course, dependent upon the 
amplitude of the underlying subharmonics. The subharmonic is strongest in case (ii), 
and here the spreading of the sheet is greatest. I n  case (iii) the middle vortex 
corresponds to the growing subharmonic. 

6. Discussion and conclusion 
Both advantages and disadvantages of the model have emerged from the present 

study. The initial conditions and extent of the flow are particularly important in the 
development of the vortex sheet, as demonstrated in this study, and hence results 
must be discussed in context. 
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FIGURE 8. Interaction of three vortices. 

No. of Prediction Interaction 
vortices Time 1 8 (Moore & Saffman 1975) from graphics 

2 (figure 2) 30 18.5 16 non-destructive non-destructive 
3 (figure 6 A )  20 12.5 15.5 non-destructive non-destructive 
2 (figure 2) 60 7 17.5 non-destructive non-destructive 
3 (figure 6B) 40 3.5 15. destructive onset of tearing 

TABLE 1. Comparison between the interaction of two and three vortices 
(rule for time comparison is used) 

In  the present study, the array of vortices was regular and thus reduced the 
possibility of amalgamation by rotation. This is unlike previous numerical studies 
of vortex sheets. Under such conditions, the only possible forms of interaction are 
tearing and elongation. Without redistribution and the coherent structure to the 
vortex sheet, rotation was found to dominate the interact' 3 ion. 

Use of the redistribution technique ensures that, in regions of rapid stretching, the 
coherent structure of the sheet is maintained, even though the vorticity becomes 
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Prediction Integration 
Time 1 6 (Moore & Saffman 1975) from graphics 

Case ( i )  

Case (ii) 

Case (i) 

Case (ii) 

(figure 6 A )  0.25 10 16 non-destructive non-destructive 

(figure 7) 0 2 5  12 17 non-destructive non-destructive 

(figure 6 A )  0.35 6 15.5 non-destructive non-destructive 

(figure 7) 0.35 5 17.5 destructive onset of tearing 

TABLE 2 .  A comparison between the development of three vortices 

weak. When no such technique is used, discrete vortices in regions of stretching are 
rapidly drawn apart, leaving two or three regions of vortex clusters with few discrete 
vortices between them. This suggests that  the ‘continuous’ structure of the sheet 
must be destroyed before vortex pairing can occur. I n  the simulation of purely 
rotational interaction as performed by Acton (1976), a similar breakdown occurred 
before the onset of pairing. 

Even with the inclusion of redistribution, rotation would probably dominate the 
interaction if the calculations were continued for longer times. But, as shown by 
Maskew (1977), significant errors occur in calculations of this kind when neighbouring 
sheets are much closer than the point-vortex separations. As seen in some of the 
figures, this point would soon be reached unless more vortices were included in the 
calculations. However, whether the increase in computer costs is worthwhile is 
questionable, since a t  late times the development would be dominated by viscous 
effects. 

The extent of the tcaring process has been controlled by the proximity of the 
vortices, as proposed by Moore & Saffman. A lack of rapid tearing was replaced by 
elongation and an overall thickening of the vortex sheet. 

Thus in real flows, where the arrays of vortices would be more irregular, a 
combination of the three processes would be expected, but the extent of each process 
depending upon the structure of the sheet. The rapidity of the tearing process would 
indicate it to have a dominant effect, but only under certain circumstances, as seen 
in the present study. 

The extent of the coherent structure of the vortex sheet was observed to depend 
on the proximity of vortices and the relative strengths. Such conditions are related 
to the importance of subharmonics present in the initial perturbation. The higher the 
number of important subharmonics in the wavelength, the earlier the breakdown of 
the coherent structure. On the other hand, fewer important subharmonics permitted 
an extended growth of the sheet. I n  real flows, the growth of the sheet might well 
extend, as a more complicated array of vortices would promote further growth of the 
stronger vortices. 

The elongation of the vortices resulted in the development of secondary vortices, 
which have been clearly observed in experimental and numerical studies. Their 
importance in the present study would suggest that these vortices might control the 
later development of the sheet, once the initial structure has been destroyed. This 
supports the possibility of a cascading process from larger to smaller vortices. 

As a check on the accuracy of the discrete-vortex method, van de Vooren (1980) 
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suggested that the Hamiltonian and vorticity centroid could be used as invariants. 
Since the set of discrete vortices is changing a t  each timestep, the Hamiltonian, in 
its usual form, is of no significance. For the interaction of two vortices, the vorticity 
centroid changed by a maximum of 0.5% over twenty steps. The corresponding 
change for three vortices in 0.6 %. 

Overall, the study has provided support for certain suppositions and identification 
with accepted results. The advantage of the present method over previous ones is 
the ease a t  which a controlled study can be made, in order to provide more 
understanding of vortex dynamics. 

One of the authors (I.G.B.) was supported by a Science Research Council CASE 
award in conjunction with Rolls Royce Ltd, Bristol. The help from both the above 
bodies is gratefully acknoweledged. The constructive suggestions of a referee for 
supporting the comparison of experimental results with those reported are also 
acknowledged. 

Appendix. The applicability of the results of Brown & Roshko (1974) to a 
vortex sheet 

In  order for a valid comparison to  be made between the experimental results of 
Brown & Roshko (1974) (for a vortex layer of finite thickness) and those of the 
presented simulation, i t  is necessary to show that, in the experimental study, the scale 
of motion exceeded the vortex-layer thickness. Thus, i t  is required to  estimate the 
thickness of the shear layer in the shadowgraph plates of Brown & Roshko. 

It may be shown that a solution to the boundary-layer equations applied to the 
problem of the growth of the interfacial layer occurring when two parallel flows of 
velocities U ,  and U ,  meet at x = 0 has a similarity solution with 

The form of the function f has to be determined numerically, and is dependent on 
the velocity ratio r = U,/ U,. The form off for r = 0.5 and r = 0 is given by Batchelor 
(1967). The solution can further be extended to  flows in which p1 != p, and v1 += w,. 
Profiles for r = 0, p; v,/p; v1 = 10, 100, 5.97 x lo4 are also given by Batchelor. 

,LA is sensibly constant for air, N, and He in the range 1-9 atm used by Brown & 
Roshko. Reference to  Kaye & Laby (1975) shows that the viscosities change by 
N 1.5 Yo, - 1 . 1  yo and - 0 yo for change of pressure from 1 to 23 atm. Kaye & Laby 
give 

air Nz He ' = 18.2 17.6 19.6. 
JAN s rn-, 

p is proportional to pressure, so u( = p / p )  is inversely proportional to pressure. 
Using p = 1.196 kg m-3 for dry air a t  20 "C and 1 atm, and using the figures of Brown 
& Roshko, 

k - 2 9  PHe-1  
- 28 9 7 1  

PN* PN2 
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air N2 He 
P 

kg mP3 
___ = 1.196 1.155 0.165. 

Then v/10P6 m2 s-l is given as follows: 

air N2 He 

1 atm 15.217 15.238 118.788 
4 a t m  3.804 3.810 29.697 
7 atm 2.174 2.177 16.970 

The length of the shadowgraph pictures can be inferred to be - 0.16 m (scale given 
in figure 3 of Brown & Roshko), so we might expect a flat transition layer with 
conditions as figure 5 (of the same paper) to have 

= 1.05 x m, 
3.810 x 0.16 x loP6 

( 8.76 

-6(  3.30 

Yupper x 4 

29.697 x 0.16 x loP6 
Ylower )' = 7.2 x m. 

Now the boundary-layer momentum thickness above and below the dividing plane 
a t  the point where the shear layers meet is estimated by Brown & Roshko to be 
0.025 x loP3 m ( lop3 in.). Twice this boundary-layer thickness could pessimistically 
be added to the transition-layer thickness. 

The above has assumed that the transition layer remains flat. It does not do so 
of course, and the manner in which it does not do so is the whole point of Brown 
& Roshko's study. The transition layer rolls up into large vortices. The rapid 
stretching of the layer required to achieve this rolling-up may intuitively be expected 
to thin it, though the additional length could be taken as indicating that a larger 
value of x than merely the streamwise coordinate should be used in estimating the 
transition-layer thickness. Since this is an order-of-magnitude estimate, it is assumed 
(probably on the flimsiest of intuition) that  these two effects cancel out. 

Hence a crude estimate of the vortex-layer thickness developed by the right-hand 
edge of figure 5 of Brown & Roshko is 8.3 mm in a mixing-layer width of - 30 mm. 
A similar estimate for their figure 4 yields a vortex-layer thickness of 4.6 mm and 
for their figure 6 (a)  5.52 mm. 

REFERENCES 

ACTON, E. 1976 The modelling of large eddies in a two-dimensional shear layer. J. Fluid Mech. 
76, 561. 

ASHURST, W. T. 1977 Numerical simulation of turbulent mixing layers via vortex dynamics. 
Sandia Labs Rep. SAND 77-8613. 

BATCHELOR, G.  K.  1967 A n  Introduction to Fluid Dynamics, $5.12, p. 346. Cambridge University 
Press. 

BROMILOW, I. G. & CLEMENTS, R. R. 1982 Some techniques for extending the application of the 
discrete vortex method of flow simulation. Aero. &. 33, 73. 

BROWAND, F. K. 1966 An experimental investigation of the instability of an incompressible, 
separated shear layer. J. Fluid Mech. 26, 281. 

BROWN, G. L. & ROSHKO, A. 1974 Density effects and large structures in turbulent mixing layers. 
J. Fluid Mech. 64, 775. 



A numerical study of vortex interaction 345 

CHRISTIANSEN, J. P. & ZABUSKY, N.  J. 1973 Instability, coalescence and fissions of finite-area 
vortex structures. J .  Fluid Mech. 61, 219. 

DAMMS, D. M. & KUCHEMANN, D. 1974 On a vortex-sheet model for the mixing between two 
parallel streams. I. Description of the model and experimental evidence. Proc. R. Soc. Lond. 
A 339, 451. 

DIMOTAKIS, P. E. & BROWN, G. L. 1976 The mixing layer a t  high Reynolds number: large- 
structure dynamics and entrainment. J .  Fluid Mech. 78, 535. 

HAMA, F. R.  & BURKE, E. R. 1960 On the rolling up of a vortex sheet. Univ. Maryland. Tech. 
Note BN-220. 

KAYE, G. W. C. & LABY, T. H. 1975 Tables of Physical and Chemical Constants. Longmans. 
MASKEW, B. 1977 Subvortex technique for the close approach to a discretized vortex sheet. J .  

Aircraft 14, 188. 
MOORE, D. W. 1979 The spontaneous appearance of a singularity in the shape of an evolving vortex 

sheet. Proc. R. Soc. Lond. A 365, 105. 
MOORE, D. W. & SAFFMAN, P. G. 1975 The density of organized vortices in a turbulent mixing 

layer. J .  Fluid Mech. 69, 465. 
VAN DE VOOREN, A. I. 1980 A numerical investigation of the rolling up of vortex sheets. Proc. 

R. Soc. Lond. A 373, 67. 
WINANT, G. D. & BROWAND, F. K. 1974 Vortex pairing: a mechanism of turbulent mixing-layer 

growth at moderate Reynolds number. J .  Fluid Mech. 63, 237. 


